Another Look at Web-Enabled

Instrument Interfaces
W.T.S. Deich, S.L. Allen, A. Misch

Web-enabled user interfaces for the control and monitoring of
Instruments and telescopes have a checkered history. The remarkable
Interactive speed and quality of Google Maps and Google Suggests
have led us to take another ook at implementing services over the
Web.

These applications rely on the so-called AJAX mechanism, which
enables lightweight, efficient, and responsive interfacesin nearly any
modern browser.* AJAX provides asimple, standards-based means
for web browsers to make asynchronous calls back to a server, and
handle responses (typically but not necessarily XML) in a callback.

Here we describe webktl, a particular Web-enabled interface for KTL
services. However, the next version of webktl will separate the KTL
data sources from the core webktl server, and thiswill allow any data
that can be modelled as keyword/value to be served by the webkil
server. For example, we will be connecting interfaces to database
tables aswell as KTL services using webktl.

* Internet Explorer 5 and 6 do not count as modern browsers. And even
some recent versions of Safari have bad problems with valid CSS. We
find that Mozilla and Firefox browsers have been the most reliable for
us.

The Virtues of AJAX

* Low bandwidth. Interfaces based on AJAX protocols generally have lower
bandwidth requirements and greater tolerance of high-latency links than, say,
remote X display servers. Thus, they can be useful for remote users.

* Window organization. Web-based interfaces organize nicely into separate
tabbed panesin amodern browser. Very useful for monitoring health and status
of several telescopes and instruments.

* Web-based: and everyone's aweb developer! Many more people can safely
experiment with and implement instrument interfaces using simple markup
languages (HTML) than using programming languages such as C, Java, or Tcl.
This may encourage staff to create interfaces for themselves, as they need them.

* Clean demar cation between content and presentation. This helpswith
faster, less buggy development because one can better focus on a single aspect
at atime.

* Web-based, not OS-based. Our other interfaces generally require loginto a
Linux or Unix host. A web interface has no such requirements, whichis
attractive to the machinists who build instruments at UCO/Lick

* Web-based —no special softwarerequired. Aslong asthe user hasa
modern browser, there's no need to install special software or use a particular
client host.

The Drawbacks of AJAX

* Early Obsolescence? Will AJAX quickly become obsolete? Many Web
technologies have sunk without atrace. We are taking a bet that AJAX will be
around for alonger while...

* Browser-based: it is difficult to make Web interfaces that please the end user
as much as native GUI applications.

* Web-based: image display tools for browsers do not offer many of the
capabilities of atraditional display package such as ds9.

* Web-based: few browsers implement the W3C standards in full.

WebKTL and the World of KTL Services, |

* At Keck and Lick Observatories, most controlled hardware
(telescopes, instruments, etc) is represented using KTL (Keck Task
Layer) services.

e KTL services represent all hardware components through sets of
keyword/value (or attribute/value) pairs.

* Clientsgain accessto KTL servicesthrough KTL client libraries,
which all follow the standard KTL API to provide uniform access
to each service's keywords.

* WebKTL isan AJAX-based interface to KTL services, containing:

* HTML + CSS (Cascading Style Sheets) pages that provide the GUI
layout. They use a Javascript library to fetch and refresh the
keyword data displayed in the page, but many interfaces need no
special Javascript of their own —it's all handled through the HTML
markup.

* A Javascript library, ajax4webktl, that supplies al the code
necessary to make the AJA Xian calls and handle the responses.

* A cgi-bin script, webktl _connect, isinvoked to handle each client
refresh request or keyword modify request.

* A persistent stage engine, webktl state, connectsto KTL services as
needed, on behalf of all web clients, and stores the state information
needed to update each client.

WebKTL and the World of KTL Services, Il

‘,".-._-.-- - --.-Hq*

r" "‘-.‘
r “
.r' User Interface !
\ — 1
. ; (]
' .
[]
®- s
« Control , "
Controlled ' Sftware Control Script i
Hardware . 2 . :
: | l | A 1
|
|
|
|
i
|
|
L]
[]

Existing services and
% user interfaces v
. ","'
"- - - - - -“‘
« WebKTL components .

Ajak4webktl.|s

LI T T T R N R R T R AR R RN

Fast and Easy Interface Development?

Although webktl is very new, and our experience with it is
commensurately short, it does seem to offer very easy, very fast
interface development.

- The keys to fast development are probably:

* Small files. So far, our AJAXian GUI's are perhaps 5-10x smaller than
equivalent GUI's written in atypical language such as Tcl/Tk. Smaller files
take less time to write.

* Markup language rather than programming language. Markup
language is simpler than programming languages, and takes less
time to produce.

We are hopeful that webktl will broaden the pool of interface
developers, by empowering non-programmers to create interfaces as
they seefit. For thisto succeed, we must

* keep all thelogicin the webktl server and the ajax4webktl
library, so that client-side interfaces consist almost entirely of
markup language, not programming language.

Data Rates

The data rates associated with webktl applications are small. For example,
the four KTL services that make up the DEIMOS spectrograph, the largest
instrument yet built by UCO/Lick Observatory, together comprise about
1280 keywords. Although the initial load by a client takes ~100K B,
successive refreshes take <10KB. Thus, awebktl session can be readily
used from a home computer over aDSL line.

Graceful Degradation - Just Say No

Good web design usually calls for "graceful degradation" —designing
each web page so that it works as well as possible with whatever
features are available in any browser, rather than being dependent
on some particular features of newer browsers.

We deliberately ignored such considerations. Our target audienceis
small and it's reasonabl e to require them to use a modern standards-
compliant browser when using a webktl application. Nonetheless, it
IS good practice to detect browsers that don't support the required
features, or are known to handle them badly, and warn the user. We
have not yet outfitted the ajax2webktl library with these features, but
will do so in afuture version.

Security

Security is a deep concern for web-enabled applications — one moment,
telescope control is safely locked up behind afirewall, and the next
moment a web application could expose tel escope control to the world.
The WebKTL suite of programs uses these security features:

* Requires HTTPS connections to make client/browser connections harder
to hijack.

* WebKTL pages should be configured to require webserver-enforced
passwords (but thisis outside webktl's ability to enforce).

* The webktl server configuration files specify which hosts and/or subnets
can monitor and/or modify which services and keywords.

* All communications are stringently checked for valid syntax, and for
reasonable service names and keyword names before handing them off to
the KTL layer for handling.

In sum, although it is possible to construct a denial of service attack against
the webktl server, it is much more difficult to gain unauthorized access to
aservice.

Nonetheless, it is prudent to put critical services (e.g. telescope and dome
control) on aweb server that is not visible to the outside world.

Example 1. A Few Live Keywords

The first webktl example shows a simple example

of ahandful of service keywords that are made to

update at about 1 Hz. The web page is shown at) O OshowA.. O
right, and the corresponding HTML + Javascript is |2 :

-

given below. AS]~ [S]8 13
ctrilclk: 8006
tempelr: 2.9235
<html> displsta: Ready
<head> adccmit:
<script src = "ajax4webktl v1.0.]s adcmod: Track
type = "text/javascript"></script> adcmsg:
adcerr: 0

<script type="text/javascript"> <!--
refreshServiceData('kladc', 900);
// --> </script>

<title>Show ADC</title> [~ o | = .
</head>

<body>

<div> ctrlOclk: <b id="kladc ctrlOclk”> </div>
<div> tempelr: <b id="kladc tempelr" > </div>
<div> dispOsta: <b id="kladc dispOsta"> </div>

<div> adccmt: <b id="kladc_adccmt" > </div>
<div> adcmod: <b id="kladc_adcmod" > </div>
<div> adcmsg: <b id="kladc adcmsg" > </div>
<div> adcerr: <b id="kladc_adcerr" > </div>
</body>

The three sections with ayellow background do the work of making thisa
live webktl page:

1. First, the required ajax4webktl javascript file is loaded.

2. A "refresh” of the kladc service is scheduled to repeat 900 ms after each
previous refresh finishes,

3. Each live-update element is identified for the ajax4webktl Javascript by
giving it aunique id named with the magic value <service>_ <keyword>,
so that the ajax4webktl javascript knows what to insert in the companion
text node.

Example 2. Using Multiple Services;
Putting Live Data into Links

OO0 MH Weather and Telescopes - SeaMonkey

(=]
J @ﬂ O @ Q % https://spg.uc |":\5urth| ':-:Ega e

+ 2 Home [JBookmarks % Wikipedia 3 mozilla.org “3 mozillaZine 3 mozdev.org 3
&[S prow. | % MH.. | % PO.. | S Kec... | S Tab... | % bt | S Cru.. | [

-

Shane Telescope

service heartheat: 52460
RA: 5:08:44.96

Dec: 37:19:34.2

HA: -0:29:58.23

Nickel Telescope

service heartheat: 9456
RA: 4:37:25.79
Dec: 37:41:36.9
HA: 0:01:39.75

Mt Hamilton Weather Stations

Shane 120 inch

Status: online (last up: Mon May 22 01:43:57 PM PDT 2006)
Dew Point: 42.60

Outside Temp: 46.40 _|
Rel. Humidity: 86.40 el

= cZ =W

This page shows three data services monitored on a single page.
Webktl is quite efficient: the visible part of this web page takes about
60 lines of HTML and javascript. (The part that is scrolled off the
bottom takes about 40 more lines. See page at right for more
details.)

<script type="text/javascript"> <!--

refreshServicebData(' net', 900);
refreshServi ceDat a(' ni ckel poco', 900);
refreshServi ceDat a(' shanepoco', 900);

function user RefreshHandl er (svc, kwd, obj) {

i f (sve == "nmet" && (kwd == "mldaturl" ||
kwd == "nRdaturl™ || kwd == "nBdaturl" ||
Kk == "mddaturl" || k == "nbdaturl")) {

/'l These keywords' values are url's, so put them
/'l into the href attribute, instead of the nornal
/| text node replacenent.

setAttributed|ld(sve, kwd, "href", obj);

return O; /1l don't apply normal handling to this
} else {
return 1, /1 apply normal handling for this

}
}

[l --> <[script>

<h2> M Ham | ton Wather Stations </ h2>

<p>

<di v>
<b[id="nmet mllocat]'> -?- </div>

<div> Status: <b[id="met_mnilstatus]> -?-

This shows the key HTML + Javascript fragments to show how webkit

readily handles multiple services.
1. It invokes refreshServiceData() for each service.

2. It al'so shows a user-supplied callback, user RefreshHandler(), which
Intercepts updates of the keywords that define the URI's for the weather
data, and puts them into an href, using a utility function setAttributeOfld().

3. Finally, it shows the markup text that webktl uses to find the correct
elements to update.

Example 3. Adding CSS to a WebKTL Page

An uninspiring page like the multi-service example above can be
made much more attractive by ssmply adding CSS (cascading
style sheets) and making some minor changesto the HTML
layout. This page show status data for the Shane and Nickel
telescopes at Lick Observatory, plus five mountaintop weather
stations, all updating at about 1Hz.

(See page at right for CSS information.)

o000 POCO GUI for AJAX demo - SeaMonkey =B

@a Q @ Q |Q}~ https:/ fspg.ucolick.org fwebktlf pocoGULE html | [@ksanrch] Cf:ga o
=

+ 8 Home [EJBookmarks %3 Wikipedia % mozilla.org % mozillaZine % mozdev.org %3 10 Day Local ...
is [% properties T % POCO GULI...]/“7:\ POCO GULI... T %+ KeckADC.... T % Tables in ...]/“7;\ html popu... T % CruzNet -...] L

AJAX-O-MATIC #1 AJAX-O-MATIC #2

An AJAXIAN MONITOR for the An AJAXIAN MONITOR for the
SHANE 3-M TELESCOPE MICKEL 1-M TELESCOPE

Right Ascension -EREDEI Mk Right Ascension E-EEEFES: M
Declination kBTN Declination EEFEY ¥ EM

Hour Angle BUHUE TR E -] Hour Angle R By I
Local Sidereal Time BRI Local Sidereal Time LI

AJAX-O-MATIC #3 an AJAXIAN MONITOR for MT. HAMILTON WEATHER STATIONS

WEATHER 3-m Vasaila 3-m Davis Harlan

Outside Temperature 48 .80 48 .00 35.20

Relative Humdity 75.60 78.00 100.00

Dew point 41.40 41.50 . . H/A

Windspeed H/A 18.00 o . 0.00
Wind Dir.

body {
margin: Opx;
padding: Opx;
}

#container ({
margin: Opx auto;
width: 785px;

}

#canvasl {
position: absolute;
top: 20px;
left: 20px;
background: #b00;
border: 3px solid;
border-color: #d22
width: 380px;
height: 200px;
text-align: center;

}

#canvas2 {
position: absolute;
top: 20px;
left: 415px;
background: #b00;
border: 3px solid;
border-color: #d22
width: 380px;
height: 200px;
text-align: center;

#teleLabels {
position: absolute;
top: 70px;
left: 5px;
width: 210px;
text-align: right;

}

#teleData {
position: absolute;
top: 70px;
left: 216px;
width: 160px;
text-align: left;

}

table {
position: absolute;
top: 35px;
left: 5px;
border: 1lpx solid;
border-color: #fe8 #fe8 #444
#444;
width: 765px;
}

There's not alot to be said about this particular style sheet; it isn't
affected by the webktl aspectsat all. The complete style sheet file for

this display is about 155 lines.

Taken together, the webktl back end, CSS, and HTML+AJAX do a
very nice job of separating content and presentation into clean layers.
With these tools in hand, an expert web designer or a casual web
experimenter can create interfaces as needed, without requiring much,
If any, assistance from a software developer.

Example 4. Beyond Monitoring:
Instrument Control with WebKTL

This example shows a control interface for the new Keck ADC, with sub-
panels that display telescope pointing data from the telescope control
keyword service and the user-controllable power supply.

This interface contains a few hundred lines of custom Javascript, whichis
used to enable or disable various control panels depending on the ADC's
control mode. Aswe gain experience with these controls, we'll generalize
them, move them into ajax4webktl, and trigger them with special markup
inthe HTML: the goal is to keep interfaces driven by markup language,
and not require specia Javascript skills.

(The page to the right shows how webktl triggers keyword writes.)

-0z Keck ADC - SeaMonkey |

=
5 @Q O @ O |Q}x https:/ fspg.ucolick.org fweblktl/ KeclkaDC . html | [GkSean:hI ng e

‘. 43 Home [JBookmarks 3 Wikipedia 3 mozilla.org 3 mozillaZine %3 mozdev.org %3 10 Day Local ...
] [“; properties T‘TQ} Keck ADC TQ} POCO GUI ... T %+ KeckADC.t... T‘TQ} Tables in ... T %+ html popu... T %+ CruzNet - ...] 5|

‘ Keck-1 Cassegrain ADC, built by UCO/Lick Observatory
{Currently in the UCO/Lick Observatory Shops, awaiting coating of prisms.)

Keck-1 DCS sSimulator

Dispatcher status: Ready

; - [RA: 02:39:08.71
Galil heartbeat clock: 50998 Dec: +37:30:00.0

HA: +01:04:17.96

Az: 325.03

Stage Status: Tracking El: 67.46
Control Mode: Track New value: ITrack | LST: 03:43:26.67

[Focal Station: cass (cassegrain)
Tracking status: Selected Instrument: Iris
iCorrected £.D.: 22.5 Elevation Tracking Error, arcsec: (L5

Pulizzi Power Controller
Prism Separation: Dispatcher status: Ready
Current, counts: -4490105 Change to: | Pulizzi status: Ready
Current, mm: 411.624 Change to: | Outs g
Target, mm: 411.622 . utlet tate

Al (Galil Power) on | on =|
Tog Speed: A2 (Interlocks Panel Power) on | on x|
Current, cts/s: 186 A3 (Servo Motor Power Supply) on m
Current, mm/s: 0.047 Change fo: | A4 (Network Hub) on

Software Lockout: unlocked | Unlocked |
Not in a limit

Last dispatcher message:

Last dispatcher errcode: O

E &4 | Done :m:&,;/’

<div class="Pos">
Prism Separation:

<table class="Pos" style="border:0">
<tr>

<td>Current, counts:</td>
<td><b |id="kladc adcraw'> -?- </td>

<td><i>Change to:</i></td>
<td><input type="text"| name="kladc adcraw"
onchange="triggerModify(this)"></td>

</tr>
<tr>
<td>Current, mm:</td>

<td><b id="kladc adcval"> -?- </td>
<td><i>Change to:</i></td>

<td><input type="text" name="kladc adcval"
onchange="triggerModify(this)"></td>

</tr>
<tr>
<td ﬁd="targetposﬂ>Target, mm:</td>

<td><b id="kladc adctva'> -?- </td>
</tr>

</table>

</div>

ThisHTML fragment generates the box labelled "Prism Separation”
in the Web page.

* Asisdonein the other examples, this uses id=<svc> <kwd> to
mark the elements whose text should be dynamically updated.

* Keyword writes are done by invoking the ajax4webktl function
trigger M odify(this) when the input changes; and

* the name=<svc>_<kwd> field is used by the triggerModify function
to identify the keyword to change.

Lines of HTML + Javascript: 326. Linesof CSS: 90.

Example 5. An Autogenerated Interface

Our last example shows a prototype of an auto-generated interface.
It's not pretty, but it is very ssmple and quick to set up. All the
work is done by an ajaxdwebktl function, which queries the webkl
server for alist of keywords and their properties, and generates an
interface on the fly. Green fields represent writable keywords
(click on the field and enter a new value); others are readonly.

The entire HTML + Javascript file for thisweb pageis:

<html>
<head>

</script>

</head>

<script src

<script type="text/javascript"> <!--
getPropertyData('kladc’',

<title>- KI1ADC -</title>

<body> </body>

"ajax4webktl v1.0.]js"
type = "text/javascript"></script>

900) ;

/] ==>

-

B AREA]

- K1ADC - - SeaMonkey =

0 O @ Q |"‘-33} http:/fspg.ucolick.org/cgi-bin/showadc | [@Lmn:hl ':E;Q e

. 4 Home [EJBookmarks " Wikipedia %3 mozilla.org ™ mozillaZine %3 mozdev.org %3 10 Day Local ...

| [% properties | = Keck ADC [= Index of /webktl [= - k1ADC - 183
ADCMOD |Adc motor control mode Halt

ADCSTA |Adc overall status Halted

ADCTRG |Adc raw position target -4724934 motor encoder counts B
ADCRAW Adc raw position -4724915 motor encoder counts .
ADCTVA |Adc separation target 352.917 mm

ADCVAL |Adc separation 352.921 mm

ADCTVX |Adc zenith distance target 196 degrees |
ADCVAX |Adc zenith distance 19.6 degrees

ADCTNM Adc named position target Unknown

ADCNAM Adc named position Unknown

ADCTRD Adc ordinal position target -999

ADCORD |Adc ordinal position -999

ADCTSP |Adc raw velocity target =217 motor encoder counts/sec
ADCSPD | Adc raw velocity 0 motor encoder counts/sec
ADCVEL | Adc prism separation rate 0.000 mm/s

ADCVEX Adc zenith distance rate 0.0000 degrees/sec -
ADCSVR |Adc servo raw tracking error -64 motor encoder counts =

Where Do We Go From Here?

1. Decouple webktl from KTL services. The webktl serverisa
powerful tool for serving any kind of datathat can be modelled as
{ servicetkeyword} /value pairs. The next version of webktl will
define an API for general data sources; KTL services will be just
one such source. New data sources become simple plug-ins for
webkil.

2. Extend the ajax4webktl Javascript library. Thekey to fast
and easy interface development by a wide range of developerslies
In keeping the HTML filessimple. Whenever significant custom
Javascript isrequired, it's a hint that the custom code should be
moved into functions in the ajax4webktl library. This must be
coupled with new markup elements that will trigger the custom
code as needed.

3. Increase efficiency. On the server side, we can eliminate the
webktl _connect process entirely; on the client side, we will try to
Implement versions of the ajax4webktl routines that require less
client-side overhead.

4. Detect lousy browser s that don't support the requisite AJAXian
features, or are known to handle them badly, and warn the user.

Web Links

All the example interfaces, plus the webktl source code, can be

found at
http://spg.ucolick.org/webktl/

