
Another Look at Web-Enabled
Instrument Interfaces
W.T.S. Deich, S.L. Allen, A. Misch

Web-enabled user interfaces for the control and monitoring of
instruments and telescopes have a checkered history. The remarkable
interactive speed and quality of Google Maps and Google Suggests
have led us to take another look at implementing services over the
Web.

These applications rely on the so-called AJAX mechanism, which
enables lightweight, efficient, and responsive interfaces in nearly any
modern browser.* AJAX provides a simple, standards-based means
for web browsers to make asynchronous calls back to a server, and
handle responses (typically but not necessarily XML) in a callback.

Here we describe webktl, a particular Web-enabled interface for KTL
services. However, the next version of webktl will separate the KTL
data sources from the core webktl server, and this will allow any data
that can be modelled as keyword/value to be served by the webktl
server. For example, we will be connecting interfaces to database
tables as well as KTL services using webktl.

* Internet Explorer 5 and 6 do not count as modern browsers. And even
some recent versions of Safari have bad problems with valid CSS. We
find that Mozilla and Firefox browsers have been the most reliable for
us.

The Virtues of AJAX

● Low bandwidth. Interfaces based on AJAX protocols generally have lower
bandwidth requirements and greater tolerance of high-latency links than, say,
remote X display servers. Thus, they can be useful for remote users.

● Window organization. Web-based interfaces organize nicely into separate
tabbed panes in a modern browser. Very useful for monitoring health and status
of several telescopes and instruments.

● Web-based: and everyone's a web developer! Many more people can safely
experiment with and implement instrument interfaces using simple markup
languages (HTML) than using programming languages such as C, Java, or Tcl.
This may encourage staff to create interfaces for themselves, as they need them.

● Clean demarcation between content and presentation. This helps with
faster, less buggy development because one can better focus on a single aspect
at a time.

● Web-based, not OS-based. Our other interfaces generally require login to a
Linux or Unix host. A web interface has no such requirements, which is
attractive to the machinists who build instruments at UCO/Lick

● Web-based – no special software required. As long as the user has a
modern browser, there's no need to install special software or use a particular
client host.

The Drawbacks of AJAX

● Early Obsolescence? Will AJAX quickly become obsolete? Many Web
technologies have sunk without a trace. We are taking a bet that AJAX will be
around for a longer while...

● Browser-based: it is difficult to make Web interfaces that please the end user
as much as native GUI applications.

● Web-based: image display tools for browsers do not offer many of the
capabilities of a traditional display package such as ds9.

● Web-based: few browsers implement the W3C standards in full.

WebKTL and the World of KTL Services, I

● At Keck and Lick Observatories, most controlled hardware
(telescopes, instruments, etc) is represented using KTL (Keck Task
Layer) services.

● KTL services represent all hardware components through sets of
keyword/value (or attribute/value) pairs.

● Clients gain access to KTL services through KTL client libraries,
which all follow the standard KTL API to provide uniform access
to each service's keywords.

● WebKTL is an AJAX-based interface to KTL services, containing:

● HTML + CSS (Cascading Style Sheets) pages that provide the GUI
layout. They use a Javascript library to fetch and refresh the
keyword data displayed in the page, but many interfaces need no
special Javascript of their own – it's all handled through the HTML
markup.

● A Javascript library, ajax4webktl, that supplies all the code
necessary to make the AJAXian calls and handle the responses.

● A cgi-bin script, webktl_connect, is invoked to handle each client
refresh request or keyword modify request.

● A persistent stage engine, webktl_state, connects to KTL services as
needed, on behalf of all web clients, and stores the state information
needed to update each client.

WebKTL and the World of KTL Services, II

Ajax4webktl.js

 Although webktl is very new, and our experience with it is
commensurately short, it does seem to offer very easy, very fast
interface development.

• The keys to fast development are probably:

● Small files. So far, our AJAXian GUI's are perhaps 5-10x smaller than
equivalent GUI's written in a typical language such as Tcl/Tk. Smaller files
take less time to write.

● Markup language rather than programming language. Markup
language is simpler than programming languages, and takes less
time to produce.

 We are hopeful that webktl will broaden the pool of interface
developers, by empowering non-programmers to create interfaces as
they see fit. For this to succeed, we must

● keep all the logic in the webktl server and the ajax4webktl
library, so that client-side interfaces consist almost entirely of
markup language, not programming language.

Fast and Easy Interface Development?

The data rates associated with webktl applications are small. For example,
the four KTL services that make up the DEIMOS spectrograph, the largest
instrument yet built by UCO/Lick Observatory, together comprise about
1280 keywords. Although the initial load by a client takes ~100KB,
successive refreshes take <10KB. Thus, a webktl session can be readily
used from a home computer over a DSL line.

Data Rates

Graceful Degradation – Just Say No

Good web design usually calls for ''graceful degradation'' – designing
each web page so that it works as well as possible with whatever
features are available in any browser, rather than being dependent
on some particular features of newer browsers.

We deliberately ignored such considerations. Our target audience is
small and it's reasonable to require them to use a modern standards-
compliant browser when using a webktl application. Nonetheless, it
is good practice to detect browsers that don't support the required
features, or are known to handle them badly, and warn the user. We
have not yet outfitted the ajax2webktl library with these features, but
will do so in a future version.

Security
Security is a deep concern for web-enabled applications – one moment,
telescope control is safely locked up behind a firewall, and the next
moment a web application could expose telescope control to the world.
The WebKTL suite of programs uses these security features:

● Requires HTTPS connections to make client/browser connections harder
to hijack.

● WebKTL pages should be configured to require webserver-enforced
passwords (but this is outside webktl's ability to enforce).

● The webktl server configuration files specify which hosts and/or subnets
can monitor and/or modify which services and keywords.

● All communications are stringently checked for valid syntax, and for
reasonable service names and keyword names before handing them off to
the KTL layer for handling.

In sum, although it is possible to construct a denial of service attack against
the webktl server, it is much more difficult to gain unauthorized access to
a service.

Nonetheless, it is prudent to put critical services (e.g. telescope and dome
control) on a web server that is not visible to the outside world.

<html>
<head>
<script src = "ajax4webktl_v1.0.js

type = "text/javascript"></script>

<script type="text/javascript"> <!--
 refreshServiceData('k1adc', 900);
// --> </script>

<title>Show ADC</title>
</head>

<body>
<div> ctrl0clk: <b id=”k1adc_ctrl0clk”> </div>
<div> tempelr: <b id="k1adc_tempelr" > </div>
<div> disp0sta: <b id="k1adc_disp0sta"> </div>
<div> adccmt: <b id="k1adc_adccmt" > </div>
<div> adcmod: <b id="k1adc_adcmod" > </div>

<div> adcmsg: <b id="k1adc_adcmsg" > </div>
<div> adcerr: <b id="k1adc_adcerr" > </div>
</body>

Example 1. A Few Live Keywords

The three sections with a yellow background do the work of making this a
live webktl page:

1. First, the required ajax4webktl javascript file is loaded.
2. A ''refresh'' of the k1adc service is scheduled to repeat 900 ms after each

previous refresh finishes.
3. Each live-update element is identified for the ajax4webktl Javascript by

giving it a unique id named with the magic value <service>_<keyword>,
so that the ajax4webktl javascript knows what to insert in the companion
text node.

The first webktl example shows a simple example
of a handful of service keywords that are made to
update at about 1 Hz. The web page is shown at
right, and the corresponding HTML + Javascript is
given below.

Example 2. Using Multiple Services;
Putting Live Data into Links

This page shows three data services monitored on a single page.
Webktl is quite efficient: the visible part of this web page takes about
60 lines of HTML and javascript. (The part that is scrolled off the
bottom takes about 40 more lines. See page at right for more
details.)

<script type="text/javascript"> <!--
 refreshServiceData('met', 900);
 refreshServiceData('nickelpoco', 900);
 refreshServiceData('shanepoco', 900);

function userRefreshHandler(svc, kwd, obj) {
 if (svc == "met" && (kwd == "m1daturl" ||

 kwd == "m2daturl" || kwd == "m3daturl" ||
kwd == "m4daturl" || kwd == "m5daturl")) {

 // These keywords' values are url's, so put them
 // into the href attribute, instead of the normal
 // text node replacement.
 setAttributeOfId(svc, kwd, "href", obj);
 return 0; // don't apply normal handling to this

 } else {
 return 1; // apply normal handling for this
 }
}
// --> </script>
...
<h2> Mt Hamilton Weather Stations </h2>
<p>
<div>

<b id="met_m1locat"> -?- </div>
<div> Status: <b id="met_m1status"> -?-
...

This shows the key HTML + Javascript fragments to show how webklt
readily handles multiple services.
1. It invokes refreshServiceData() for each service.
2. It also shows a user-supplied callback, userRefreshHandler(), which

intercepts updates of the keywords that define the URI's for the weather
data, and puts them into an href, using a utility function setAttributeOfId().

3. Finally, it shows the markup text that webktl uses to find the correct
elements to update.

Example 3. Adding CSS to a WebKTL Page

An uninspiring page like the multi-service example above can be
made much more attractive by simply adding CSS (cascading
style sheets) and making some minor changes to the HTML
layout. This page show status data for the Shane and Nickel
telescopes at Lick Observatory, plus five mountaintop weather
stations, all updating at about 1Hz.

(See page at right for CSS information.)

body {
 margin: 0px;
 padding: 0px;
}

#container {
 margin: 0px auto;
 width: 785px;
}

#canvas1 {
 position: absolute;
 top: 20px;
 left: 20px;
 background: #b00;
 border: 3px solid;
 border-color: #d22 ...;
 width: 380px;
 height: 200px;
 text-align: center;
}

#canvas2 {
 position: absolute;
 top: 20px;
 left: 415px;
 background: #b00;
 border: 3px solid;
 border-color: #d22 ...;
 width: 380px;
 height: 200px;
 text-align: center;
}
...

...
#teleLabels {
 position: absolute;
 top: 70px;
 left: 5px;
 width: 210px;
 text-align: right;
}

#teleData {
 position: absolute;
 top: 70px;
 left: 216px;
 width: 160px;
 text-align: left;
}

table {
 position: absolute;
 top: 35px;
 left: 5px;
 border: 1px solid;
 border-color: #fe8 #fe8 #444
#444;
 width: 765px;
}
...

There's not a lot to be said about this particular style sheet; it isn't
affected by the webktl aspects at all. The complete style sheet file for
this display is about 155 lines.

Taken together, the webktl back end, CSS, and HTML+AJAX do a
very nice job of separating content and presentation into clean layers.
With these tools in hand, an expert web designer or a casual web
experimenter can create interfaces as needed, without requiring much,
if any, assistance from a software developer.

Example 4. Beyond Monitoring:
Instrument Control with WebKTL

This example shows a control interface for the new Keck ADC, with sub-
panels that display telescope pointing data from the telescope control
keyword service and the user-controllable power supply.

This interface contains a few hundred lines of custom Javascript, which is
used to enable or disable various control panels depending on the ADC's
control mode. As we gain experience with these controls, we'll generalize
them, move them into ajax4webktl, and trigger them with special markup
in the HTML: the goal is to keep interfaces driven by markup language,
and not require special Javascript skills.

(The page to the right shows how webktl triggers keyword writes.)

<div class="Pos">
 Prism Separation:

 <table class="Pos" style="border:0">
 <tr>

<td>Current, counts:</td>
<td><b id="k1adc_adcraw"> -?- </td>

<td><i>Change to:</i></td>
<td><input type="text" name="k1adc_adcraw"

 onchange="triggerModify(this)"></td>
 </tr>
 <tr>

<td>Current, mm:</td>
<td><b id="k1adc_adcval"> -?- </td>
<td><i>Change to:</i></td>

<td><input type="text" name="k1adc_adcval"
 onchange="triggerModify(this)"></td>

 </tr>
 <tr>

<td id="targetpos">Target, mm:</td>
<td><b id="k1adc_adctva"> -?- </td>

 </tr>
 </table>

</div>

This HTML fragment generates the box labelled ''Prism Separation''
in the Web page.

● As is done in the other examples, this uses id=<svc>_<kwd> to
mark the elements whose text should be dynamically updated.

● Keyword writes are done by invoking the ajax4webktl function
triggerModify(this) when the input changes; and

● the name=<svc>_<kwd> field is used by the triggerModify function
to identify the keyword to change.

Lines of HTML + Javascript: 326. Lines of CSS: 90.

Example 5. An Autogenerated Interface

Our last example shows a prototype of an auto-generated interface.
 It's not pretty, but it is very simple and quick to set up. All the
work is done by an ajax4webktl function, which queries the webktl
server for a list of keywords and their properties, and generates an
interface on the fly. Green fields represent writable keywords
(click on the field and enter a new value); others are readonly.

The entire HTML + Javascript file for this web page is:

<html>
<head>
<script src = "ajax4webktl_v1.0.js"
 type = "text/javascript"></script>

<script type="text/javascript"> <!--
 getPropertyData('k1adc', 900); // -->
</script>

<title>- K1ADC -</title>
</head>

<body> </body>

Where Do We Go From Here?

1. Decouple webktl from KTL services. The webktl server is a
powerful tool for serving any kind of data that can be modelled as
{service+keyword}/value pairs. The next version of webktl will
define an API for general data sources; KTL services will be just
one such source. New data sources become simple plug-ins for
webktl.

2. Extend the ajax4webktl Javascript library. The key to fast
and easy interface development by a wide range of developers lies
in keeping the HTML files simple. Whenever significant custom
Javascript is required, it's a hint that the custom code should be
moved into functions in the ajax4webktl library. This must be
coupled with new markup elements that will trigger the custom
code as needed.

3. Increase efficiency. On the server side, we can eliminate the
webktl_connect process entirely; on the client side, we will try to
implement versions of the ajax4webktl routines that require less
client-side overhead.

4. Detect lousy browsers that don't support the requisite AJAXian
features, or are known to handle them badly, and warn the user.

Web Links

All the example interfaces, plus the webktl source code, can be
found at

http://spg.ucolick.org/webktl/

