
Another look at web-enabled instrument monitoring and

control

W. T. S. Deich and Steven L. Allen,

UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 USA

ABSTRACT

Web-enabled user interfaces for the control and monitoring of instruments and telescopes have a checkered
history. However, the remarkable interactive speed and quality of Google Maps and Google Suggests have led us,
like others, to take another look at implementing services over the Web. The so-called AJAX mechanism enables
simple, lightweight, efficient, and responsive interfaces in nearly any modern Web browser. We discuss methods,
security, and other implementation issues for sample interfaces that include telescope monitoring, instrument
control, and weather station information.

Keywords: web services, AJAX, GUI, instrument control

1. INTRODUCTION

Since the Web first came to prominence in the early 1990s, observatory and instrument software developers have
striven to take advantage of its ability to connect remote users easily with telescope and instrument monitor
and control software. Early efforts at web-based user interfaces were plagued by cross-browser incompatibilities,
limited capabilities of the available graphical toolkits, and uneven support for secure connections.

Early versions of Java (http://java.sun.com) were promoted in the mid-1990s for cross-platform interface
development using AWT (Abstract Windowing Toolkit1), but suffered from a primitive widget library and
an inconsistent look and feel across operating systems. Furthermore, a great deal of UCO/Lick Observatory
instrument-control software is Linux-based, but throughout the 1990s Java implementations on Linux systems
were neither ubiquitous nor predictably functional.

Cross-browser incompatibilities were manifold. Microsoft provided asynchronous remote scripting as early
as 1995, but it would only run on Windows. Software that only runs on Windows is of little interest in our
Unix/Linux-oriented environment.

The introduction of Google Maps (http://maps.google.com) in 2005 impressed many Web users with its
very high quality graphical user interface (GUI), which gave the lie to the assertion that Web interfaces were
doomed to be second-class citizens in the world of GUIs. This sparked our interest in experimenting with the
same technologies that underlie Google Maps, for use in observatory and intrument user interfaces. The so-called
AJAX (Asynchronous Javascript And XML) combination of Web technologies used to implement Google Maps
was not invented by Google, but the brilliance of the Google interface provided the spark that brought it to the
attention of developers everywhere.

At UCO/Lick Observatory, we already have a large investment of time in our existing GUI tools. Most
notably, the Tcl/Tk-based dashboard toolkit2 has been successfully used for a series of instrument interfaces,
including DEIMOS, ESI, and the HIRES exposure meter at Keck Observatory; PFCAM at Lick Observatory;
and the engineering interface for the soon-to-ship Keck I atmospheric dispersion compensator. Nonetheless, we
are interested in Web-based tools for a variety of reasons, including:

Further author information- (Send correspondence to W.D.)
W.D.: Email: will@ucolick.org; Telephone: 831-459-3913; Fax: 831-459-2298;
S.A: Email: sla@ucolick.org; Telephone: 831-459-3046; Fax: 831-459-2298



• Network efficiency. Interfaces based on AJAX protocols generally have lower bandwidth requirements and
greater tolerance of high-latency network links than remote X display servers which often stutter and freeze.
A web-based interface that is otherwise less optimal than a dashboard interface, may be very attractive to
a remote user working over a low-bandwidth, high-latency connection.

• Window organization. Web-based interfaces naturally organize nicely into separate tabbed panes in a
modern browser. This is very useful to observatory staff who may need to monitor the health and status
of several telescopes and instruments. By contrast, organizing a crowded desktop displaying a collection
of separate standalone applications is an often-irritating task.

• Operating system and host independence. To use a dashboard interface, the user must use a Unix/Linux
host on which all the requisite software is installed. A web interface has no such requirements. This can be
very attractive for our machinists who build the instrument hardware, but use only Windows computers.

• Web convenience. Making resources available over the web may begin as a modest convenience to users, but
over time may become useful in wholly new ways. Creating web-based access to telescopes and instruments
is a way to develop those conveniences and discover new capabilities.

The remaining sections of this paper give a brief description of AJAX web interfaces; compare AJAX interfaces
with other remote access interfaces for observatory and instrument use; consider AJAX interfaces for local
(observatory intranet) use; and describe our experimental WebKTL system for providing AJAX-based interfaces
to Keck and Lick Observatory telescopes and instruments.

2. AJAX INTERFACES

During the mid-1990s, Dynamic HTML (DHTML) evolved to provide a means of creating interactive web pages.
DHTML extends the foundation of static HTML pages by adding the DOM (Document Object Model, a language-
neutral API that describes a web page in a uniform manner, allowing its elements and fields to be readily accessed
by a programming language) and a client-side scripting language such as Javascript. Javascript can trigger on
any of the usual GUI-related events such as mouse motion or key clicks, so it is possible to create client-side
interfaces with good interactivity.

Although a Javascript-enabled web page could have good interactivity with the user, its interaction with the
web server was relatively crippled:

• Clients would interact synchronously with the web server, so that the web page’s interface would become
briefly non-responsive while awaiting the response from the server.

• Typically, updates would not occur until the user explicitly pressed a button or key.

• The server would send back entire web pages. If the web page contained extensive amounts of information,
it could take significant time to compose the page at the server side, transmit it to the browser, which
would then have to fully parse and render the updated page.

The preferred means for overcoming these problems lies in the XMLHttpRequest mechanism, which allows
code embedded in a web page to make asynchronous calls back to a web server, and use a callback to handle the
response. Originally created by Microsoft as an ActiveX object in the late 1990s, it has since been re-implemented
as a native Javascript object in most other browsers. Where appropriate, client-side events or timers can use
XMLHttpRequest to trigger updates immediately, in the background, without explicit extra button-presses by
the user. Inside the response-handling callback, Javascript can parse the response data and update the browser’s
copy of the page’s DOM, which in turn triggers an update of the modified parts of the display.

Together, this combination of Asynchronous Javascript And XML was dubbed AJAX.∗ In its most common
use, the XMLHttpRequest object specifies a callback handler, and then makes an asynchronous GET or POST
request to the web server.3

∗Originally, the XMLHttpRequest was intended to retrieve data encapsulated in XML. Although XML is the most
widely-used data-encapsulation method for XMLHttpRequest callbacks, in practice any sort of data encapsulation can be
used, and the callback function is responsible for parsing it correctly and inserting data into the DOM.



In the past few years, nearly all modern browsers have implemented support for the DOM, Javascript, and
the XMLHttpRequest Javascript object. Although the DOM is language-neutral, Javascript is of special interest,
because it is available on nearly all modern browsers.

AJAX applications have all the security issues that any Web applications must overcome. They communicate
via HTTP, and therefore, from a Web server’s point of view, are no different from any other Web client. We
discuss security implications in Section 5.6.

Programming directly with the XMLHttpRequest object is inconvenient, due to slight vendor-to-vendor
variations in implementation. The Javascript code must make a variety of tests for implementation details in
order to execute code that is valid in the user’s browser. The best practical solution for this is to use one of
many freely-available AJAX libraries that wrap all the ugly details in convenient APIs.3

Not every browser supports Javascript, and the user may deliberately disable it on other browsers. That will
cause AJAX-based interfaces to fail. Most well-designed business applications will attempt to degrade gracefully
to interfaces that are less attractive but will work within the user’s environment. This can mean substantial
additional programming for the developer. In our observatory environment, however, we simply reject browsers
that do not support Javascript and enable cookies.

2.1. Non-AJAX interactive methods

.

AJAX is not the only means of providing efficient web-based interactive pages. Before the widespread
availability of AJAX, the most popular method for enabling asynchronous interactive web pages was based
on using iFrames in place of XMLHttpRequest. However, XMLHttpRequest is generally cleaner (having been
purpose-built for remote calls), faster, has a more consistent API, and readily handles XML.

Another method of interest is HTTP Streaming. The connection to the web server remains open, allowing
the server to stream data to the client. This, superficially, makes it an appealing model for observatory services
that want to broadcast updates of telescope or instrument state. However, when latency and bandwidth are
of concern, the XMLHttpRequest polling method is preferable, because it conveniently ensures that the client
will ask for and thus receive updates no faster than it can handle them. More importantly, proxies in the path
between browser and server may interfere with the desired flow of data.

3. REMOTE INTERFACE ARCHITECTURES

AJAX interfaces represent only one among many means of implementing remote interfaces for observatory
applications. Each technique has its advantages and drawbacks. A selective listing of some of these architectures
include:

1. Direct remote display. User interface software runs locally at the observatory, but displays to a remote
window system, often using a connection that is securely forwarded over an ssh session.

2. VNC display. User interface software runs locally at the observatory, including displaying to a VNC (virtual
network computing) X server at the observatory. The remote observer uses a VNC client to connect to
the observatory’s VNC server. As with the previous method, it is common to use ssh to provide a secure
“tunnel” for the VNC connection.

3. Remote GUI. A copy of the user interface software runs on the remote user’s computer, communicating
with the underlying services which reside on the local observatory computers.

4. AJAX-based. All software runs locally at the observatory, except that the remote user interacts with the
software via a web browser and AJAX.



3.1. Method 1: direct remote display

Direct remote display, tunneled over ssh, has been employed for remote observing at Keck Observatory.4

Advantages:

• Local management of software. All software except the remote user’s window system and configuration
resides on the observatory-managed computers. This is very important, because it is difficult to ensure
that a remote user’s computing environment will support the observatory’s custom software.

Disadvantages:

• Slow GUI response. Typical GUIs have many widgets, and it is time-consuming to update them when
network latency is large. Image displays are slow to pan and zoom, again due to network latency and/or
reduced bandwidth.

• Both major and subtle configuration problems. The remote user’s window manager must be configured to
operate well with observatory software. Even as minor a variation as the user’s choice of “click-to-type” or
“click-to-place-new-window” can cause the observatory software not to function as intended.

• Display compatibility. The remote user’s window system must be compatible with observatory software
(e.g. both must use the X Window System).

3.2. Method 2: VNC display

VNC display is similar to Method 1, but the observatory software display output goes to a VNC (virtual network
computing) X server. The remote user runs a VNC client that connects to the VNC server. This method has
become the preferred method for remote observing at Keck Observatory.4

Advantages:

• Local management of all software, up to and including the VNC server.

• Remote users need only have a VNC client, and these exist for Unix/Linux systems, Microsoft Windows,
and Macintosh systems.

• VNC offers significantly better throughput compared to a direct connection to a remote X server, when
operating over long-latency and/or low-bandwidth connections.

Disadvantages:

• Remote users must have a VNC client installed (not normally a large hurdle).

• If the remote user’s screen dimensions (in pixels) are not at least as large as the screen dimensions used
locally at the observatory, the remote user may have to pan the VNC client’s view into the VNC server’s
display or else not be able to see all the GUI components.

3.3. Method 3: Remote GUI

This method is significantly different from methods (1) and (2). Here, a copy of the GUI software runs on
the remote user’s computer, communicating with the underlying services which reside on the local observatory
computers.

Advantages:

• Very good interactive performance. Mouse clicks, keystrokes, and graphical output are processed by the
remote user’s computer instead of travelling to the observatory computer, avoiding the latency problems
that can afflict methods (1) and (2).



• Modest bandwidth requirements. Excepting image display, the bandwidth requirements are modest com-
pared to methods (1) and (2), because transmitting the data (e.g. telescope pointing information, in-
strument filter selection, etc) generally requires less bandwidth than is required to transmit changes to
graphical windows in methods (1) and (2).

Disadvantages:

• Management issues. The client software resides on the remote user’s computer, so there are serious man-
agement headaches, such as version mismatches, hardware/software incompatibilities, missing dependent
software, etc.

• Firewalls. Depending on the client software’s communication protocols with the back-end services, it may be
difficult to forward the client-server communications through the firewalls that protect most observatories.
Some protocols can be easily tunneled over (say) ssh connections, but other protocols are not firewall-
friendly.

• Image transfer. Current-generation CCDs and arrays of CCDs may have many more pixels than a computer
display; thus, transmitting an entire FITS image to a remote client may take significantly longer than
transmitting a processed display image.

3.4. Method 4: AJAX-based

Advantages:

• No special software requirements. Virtually all modern browsers have AJAX support, so no special software
is required at the remote user side.

• As with Method 3, the network bandwidth requirements are modest.

• Clean demarcation between presentation and data access. It is our experience that observatory and in-
strument software developers are not often experts in user interface design. We speculate that the clean
demarcation between presentation via a Web interface, and the AJAX methods required to access the
underlying data, may lead to better observatory and instrument GUIs. A web-design expert, who is not
expert in the internals of an instrument’s software, can produce a high-quality interface by just learning
two Javascript calls to access the data.

Disadvantages:

• It is difficult to make Web interfaces that please the end user as much as native GUI applications, because
the web programming environment is less rich than a typical GUI development environment.

• As with many Web technologies, AJAX might become obsolete shortly after a developer commits to using
it.

• Web-based image display tools do not offer many of the capabilities of a traditional display package such
as ds9.

4. LOCAL ACCESS VIA AJAX

AJAX-based interfaces may be as much useful for certain local access purposes as for remote access. They may
be particularly useful for system monitoring and engineering access during system development.

For more than a decade, the user interface software for all the instruments developed by UCO/Lick Obser-
vatory for both the Keck and Lick Observatories has been Unix/Linux-based. However, many of the technicians
who build the instruments use Windows exclusively. We have observed that the need to log into and use a
Unix/Linux system acts as a barrier to entry for the technicians, discouraging them from using the instrument



control software during the development and construction period. A web-based instrument control system would
avoid these problems.

Observatory staff must monitor the health and status of a wide variety of systems. It is often a headache
to manage the placement of the multiple windows that make up a suite of standalone software interfaces. By
contrast, if the monitoring software is embedded in a browser, each system’s web pages may be placed in a
separate tabbed pane of the browser.

When system-monitoring software is embedded in a browser, an additional modest convenience is obtained
because the monitor interfaces for a variety of systems can be reached by simply clicking on a link in a browser.
In principle, this is not notably simpler than selecting a suitable program from a pull-down menu. In practice,
however, it is our observation that many staff prefer navigating via the browser.

These issues of simplified access and screen management are relatively small things, but day-in and day-
out they can spell the difference between software that makes routines a little easier for observatory staff, and
software that irritates them each day.

5. WEBKTL

5.1. KTL services

At Keck Observatory, and increasingly at Lick Observatory, most controlled hardware (telescopes, instruments,
etc) is represented using KTL (Keck Task Layer) services.5

KTL services represent all hardware components through sets of keyword (or attribute)/value pairs. A KTL
service is a simple construction of very flat design, in the sense that all attributes are equally visible to all
clients, and no hierarchical structure is built into the keywords. Such uniform visibility also enables efficient
use of an evolved set of diagnostic tools: one may attach general-purpose software tools to a keyword to permit
transparent monitoring without affecting the underlying software. When a higher-level abstraction is required,
keywords for several components may be aggregated into a compound object. Together, these features mean
that all software clients can have access to the same complete view of the system. This makes it simple to
use the services interface to write sophisticated, hierarchical control systems; GUIs for observers, operators,
and engineers; simple or complex observing scripts; and all necessary support for robotic, remote, or queued
observing.

Clients gain access to a KTL service through the use of KTL client libraries. Each KTL service has a matching
shared-object client library, which implements the standard KTL API to provide access to the service’s keywords.
A client dynamically loads the KTL client libraries for any services with which it wishes to communicate.

A well-designed set of KTL services and clients ensures that all state information is computed and stored
on the service side, and clients never compute system state. This ensures that all clients can have the same,
complete view of the system state. (This sounds obvious, but it is sometimes easy and expedient for a client to
compute some small piece of state information. For example, a GUI may embed a rule such as “if the observer
selects filter X, then the camera focus should be set to Y”. This may be expedient, but it is better that the rule
be put into the KTL service, rather than kept private to a client.)

5.2. WebKTL: an AJAX-based interface to KTL services

UCO/Lick Observatory’s first foray into AJAX applications for instrument and telescope monitor and control is
WebKTL.

WebKTL consists of these components:

• Semi-static HTML and/or server-side include (SSI) generated HTML pages that provide the GUI layout
for an instrument or other device with a KTL service interface. These pages include the Javascript that
fetches and refreshes the keyword data displayed in the page. (Here, semi-static means that nearly all of
the content is static, except for a session cookie generated each time the page is fetched.)

• A cgi-bin script, webktl connect, invoked to handle each client refresh request or keyword modify request.



• A persistent state engine, webktl state, that connects to KTL services as needed, on behalf of all clients, and
stores the state information needed to refresh each client with any changed keyword data upon demand.

Figure 1 illustrates the WebKTL components, and shows them in the context of the existing world of KTL
services and clients. Each user interface, control script, and the WebKTL state engine is a client of one or
more KTL services. As KTL clients, each loads one KTL client library for each KTL service with which it is
communicating.

WebKTL’s HTML pages come in two flavors. First, there is a general-purpose interface that can be used
for any service: this is a simple dynamic tree for browsing and/or editing keywords. Second, there are custom-
designed user interfaces for specific instruments and telescopes.

The general-purpose interface is useful mainly for engineering purposes. Although it is not an attractive
interface for ordinary use, it does provide KTL service access to users who do not use the Unix/Linux hosts on
which our custom client software is installed.

5.3. The webktl connect cgi-bin script

The webktl connect cgi-bin script is a small Tcl script that is invoked by an XMLHttpRequest object in the
HTML page. Nearly all requests are refresh requests, sent by the client at about 1 Hz, calling for updates of
any keyword values that have changed since the last request. A ‘modify’ request is sent when the user wants to
change a keyword (for example, to select a new filter position).

When webktl connect starts running, its standard input and output are connected as for any cgi-bin script:
GET-method requests are passed through the environment; POST-method requests arrive over stdin; and the
response is passed back over stdout to the browser. Webktl connect begins by making a connection to the socket
on which the webktl state state engine should be listening. If it cannot connect, it exec’s webktl state, waits for
the engine to acknowledge either a successful startup or a failure to start, and then tries again to connect. A
failure at this point is fatal.

After webktl connect connects to webktl state, it starts interpreting the request. It checks that the required
session cookie exists (else returns a message explaining the need for cookies), and that the request is syntactically
valid. The request is converted to a proper Tcl list, and sent over the local socket to the state engine, along with
the cookie and the browser’s IP address and hostname. The webktl connect instance then waits for the response
from webktl state, formats the response as XML, sends the result back to the client, and exits.

5.4. The webktl state persistent state engine

The webktl state state engine starts by attempting to listen for WebKTL requests on a localhost socket. If
unsuccessful, it exits; otherwise, it takes no further actions until it receives a client request. It always sends a
success or failure status message to stdout. If it was started from a webktl connect instance, the caller uses the
status message to knows whether it should proceed with making a connection or exit with an error.

No authentication is done for incoming client connections; this implies that only trusted users are executing
programs on the local host. (Existing KTL services do not provide authentication mechanisms, so KTL has always
had an implicit requirement that only trusted users may use computers with direct access to KTL services.)

Webktl state reads data from a webktl connect client, using non-blocking I/O, until it has assembled a proper
Tcl list. It syntax-checks the list for validity, and checks whether the request is originating from an IP address
or hostname that has permission to make the specific request. (See the section on security, below.)

If the remote host has permission to access this KTL service, and the service is not yet being monitored by the
state engine, webktl state loads the service client library and begins to monitor all the keywords. KTL services
asynchronously broadcast updated keyword values whenever a keyword changes (and typically throttle their
broadcast rate at 1 Hz). Each time a keyword is updated, webktl state records the new value and its modification
time. For security and/or performance reasons, webktl state doesn’t “publish” all of these keywords to its clients.
Instead, it consults a configuration file to know which keywords should be published for read and/or modify
access, and only those keywords will be made visible to WebKTL sessions. A reasonable configuration might
configure all keywords as readonly for hosts that are outside a limited part of the observatory intranet.



KTL client library

KTL client library

KTL Service

KTL Service

KTL client library

Controlled 
Hardware

Control 
Software

KTL client library

User Interface

Control Script

Client #1
browser

Web
Server

Client #1
state

Client#2
state

KTL client library

webktl_state
engine

WebKTL components

Existing services and
user interfaces

HTML
templates

Client #2
browser

webktl_connect
cgi- bin script

Figure 1. The WebKTL components are shown here as additions to the existing KTL services and clients infrastructure.
Web browsers use a cgi-bin script to poll for frequent data refreshes.



If the connection is from a new WebKTL session — as indicated by a session cookie that is unknown to
the state engine — webktl state initializes a last-updated timestamp for the {session,service} pair to 0. The
timestamp will be used to track the last-update time of the WebKTL session’s view of the service data.

Refresh requests are handled by comparing each published keyword’s modification time to the {session,service}
last-update timestamp, and putting putting modified keyword/value pairs into the response data. If the request
is from a new WebKTL session, the response data will also include keyword attributes for permission (readonly,
writeonly, or read/write) and data type.

Modify requests are handled by checking that the keyword has been published for modification, executing the
underlying KTL-modify command, and returning the KTL-modify status code and associated status message.

Webktl state only needs to store a small amount of data for each session, consisting of the per-service last-
update timestamps and a last-modify-request timestamp. The last-modify-request timestamp is described in the
section on security, below. If a WebKTL session fails to make refresh requests reasonably often (about once per
minute), webktl state assumes that the WebKTL session has been closed and the client data is not needed. If a
WebKTL session later re-uses the cookie, it will be regarded as a new session.

5.5. Data Rates

The initial data transfer from webktl state to a WebKTL client sends all of a service’s keywords and their at-
tributes. This can be relatively large. For example, the four services that make up the DEIMOS spectrograph
system, the largest instrument yet built by UCO/Lick Observatory, together comprise approximately 1280 key-
words. The initial refresh-response is about 100 KB. However, the following refresh requests require much less
data: fewer than 200 keywords change each second, and the data rate is less than 9 KB/s. Thus, a WebKTL
session is quite parsimonious with its data rates, and can be used as readily from a home computer over a DSL
line as from a computer connected via high-speed network.

5.6. Security

Security is a deep concern for web-enabled applications — one moment, telescope control is safely locked up
behind a firewall, and the next moment a web application could expose telescope control to the world at large.

The most important part of WebKTL security lies outside the HTTP level itself, and is enforced by sensible
configuration of the web server. First, only HTTPS (HTTP over Secure Socket Layer, or in current argot, HTTP
over Transport Layer Security) connections are permitted. This helps ensure that communications between the
browser and WebKTL server are not hijacked. Second, all connections must use password authentication. Third,
it is helpful but not essential to configure the web server to limit access by host or domain name. Webktl state
always applies its own restrictions based on hostname or IP address, but the web server can limit denial of service
attacks with host access control lists.

The webktl connect cgi-bin script rejects any queries that are not syntactically well-formed; that use implau-
sibly long service or keyword names; or that attempt to issue a modify request with a string exceeding 4KB. All
other tests are applied by the webktl state state engine. Webktl state first checks that:

• The browser’s hostname and/or address is acceptable.

• The browser’s host is not making new-session requests excessively frequently, else the request is rejected.

• This WebKTL session is not making refresh requests or modify requests excessively fast, else the request
is rejected.

Webktl state then goes on to check KTL service name, keyword, and value (for modify requests):

• The service name and keyword must contain only letters, digits, and/or underscore;

• The KTL service and keyword names must not exceed 100 characters each;

• Modify requests must not attempt to pass strings longer than 4KB.

• Modify requests are not permitted unless the underlying KTL service grants modify permission and the
WebKTL configuration file grants write permission to the browser’s IP address.



Figure 2. A simple example of a WebKTL interface. This interface requires no special programming to produce, and is
useful to give technicians control of motors before a polished, dedicated user interface is created.



5.7. Sample Implementations

An early, very simple interface is shown in Fig. 2. This simple interface is not particularly attractive, but
it is immediately function for any KTL service without requiring any programming. This makes it useful to
technicians who typically need motor control long before a polished, dedicated user interface has been created.

A more polished interface was not available at this writing, but current implementations may be seen at
http://spg.ucolick.org/webktl. These include sample code for telescope monitoring, instrument control,
and displaying weather station information.

6. FUTURE WORK AND CONCLUSIONS

AJAX methods provide low-overhead methods of implementing user interfaces.

The work described in this paper is presently being extended by creating high-quality custom AJAX instru-
ment interfaces.

A second problem that deserves attention is the updating of the KTL keyword design. The WebKTL system
addresses the problem of how to display user interfaces efficiently over the web. However, it does not help software
to know what is represented by the KTL keywords that it encodes, so it isn’t easy to automatically generate a
high-quality interface. This problem exists for any interface built for KTL services, not just AJAX interfaces.

The problem starts with the limitations of KTL keywords, which are restricted to very simple data types
(integer, floating point, and small arrays of these; boolean, and character string). Instruments developed at
UCO/Lick Observatory have employed a set of conventions for these keywords, thus providing a descriptive layer
on top of KTL. For example, all keywords associated with a particular stage will begin with a common prefix,
e.g. CFILT might be the prefix for a filter wheel stage. Similarly, there is a set of standard keyword suffixes that
is used in a regular manner, e.g. the NAM suffix is used for named positions. Thus the CFILTNAM keyword refers
the named positions of the CFILT stage.

The dashboard toolkit makes use of these conventions to simplify the construction of new instrument interfaces,
but their informality still demands significant manual oversight. Thus, ordinary software, including our AJAX
applications, aren’t capable of auto-generating a particularly nice interface. Perhaps it would be possible to come
closer to auto-generating a good interface if the detailed characteristics of instruments were formally described
using XML.

There have been previous attempts to describe the characteristics of astronomical instrument control formally
using XML,6 but these notions have not yet been employed at UCO/Lick Observatory. AJAX’s support for XML
invites treating groups of keywords as objects described by nested entities in XML. It also invites using object-
oriented snips of javascript which produce engineering interfaces that meaningfully display all of the keywords
related to a particular motor.

REFERENCES

1. “Abstract Window Toolkit.” http://java.sun.com/javase/6/docs/guide/awt/index.html.

2. D. Clarke, “Dashboard: A Knowledge-Based Real-Time Control Panel,” in Proceedings of the Fifth Annual
Tcl/Tk Workshop 1997, J. A. Konstan and B. Welch, eds., USENIX Proceedings , 1997.

3. J. Gehtland, G. Galtraith, and D. Almaer, Pragmatic Ajax A Web 2.0 Primer, The Pragmatic Programmers
LLC, Raleigh, N.C., 2006.

4. R. Kibrick, S. L. Allen, A. Conrad, and G. D. Wirth, “Optimizing interactive performance for long-distance
remote observing,” in Advanced Software and Control for Astronomy, H. Lewis and A. Bridger, eds., Proc.
SPIE 6274, 2006.

5. W. F. Lupton, “Keck telescope control system,” in Astronomical Data Analysis Software and Systems IX,
N. Manset, C. Veillet, and D. Crabtree, eds., ASP Conf. Ser. 216, 2000.

6. T. Ames, L. Koons, K. Sall, and C. Warsaw, “Using XML and Java for telescope and instrumentation
control,” in Advanced Software and Control for Astronomy, H. Lewis, ed., Proc. SPIE 4009, 2000.


